
Extracting the Harmfulness Classifier of Aligned LLMs

by

Jean-Charles Noirot Ferrand

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Science

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2024

Date of thesis submission: 12/13/2024

ii

The thesis is approved by the following members of the Thesis Committee:
Patrick D. McDaniel
Tsun-Ming Shih Professor of Computer Sciences, School of Computer,
Data, & Information Sciences
Thesis Advisor

Rahul Chatterjee
Assistant Professor, School of Computer, Data, & Information Sciences

Chaowei Xiao
Assistant Professor, School of Computer, Data, & Information Sciences

© Copyright by Jean-Charles Noirot Ferrand 2024
All Rights Reserved

i

contents

Contents

List of Tables iii

List of Figures iv

Abstract vi

1 Introduction 1

2 Background 4
2.1 Large Language Models (LLMs) 4
2.2 Alignment and Harmfulness 5
2.3 Attacks on LLMs 6

3 Methodology 8
3.1 Threat Model 8
3.2 Problem Formulation 9
3.3 Estimating the Classifier 10

4 Evaluation 12
4.1 Experimental Setup 12
4.2 Benign Settings 13
4.3 Adversarial Settings 15

5 Discussion & Future Work 24
5.1 Domains 24
5.2 Implication for White-box Attacks 24
5.3 Embedded Classifier 25

6 Related Work 27

ii

6.1 Jailbreak and Representations 27
6.2 Pruning 27

7 Conclusion 29

A Appendix 30
A.1 Subspace Analysis 30
A.2 Datasets 36
A.3 Dataset Augmentation 36
A.4 Estimations 39
A.5 Other Models 40

Bibliography 48

iii

list of tables

4.1 Classification metrics of the models on the two in benign settings. 14
4.2 Classification metrics of the models on AdvBench after applying

a white-box attack, along the attack success rate (ASR) on
harmful inputs. 16

A.1 Hyperparameters for training the classifier head 40
A.2 Classification metrics of the models on the two in benign setting 41

iv

list of figures

3.1 Methodology overview. In the first step, we estimate the harm-
fulness classifier of an LLM by (A) selecting a structure within
the model and (B) training a classification head on the pre-
dicted labels from the LLM and verify the equivalence in benign
setting. Then, we empirically verify that the estimation and the
model are equivalent in adversarial setting, i.e., adversarial ex-
amples of the LLM (C) transfer to the classifier estimations and
adversarial examples of the classifier estimations (D) transfer
to the LLM. 8

4.1 Test F1 of the estimations of the classifier in benign setting,
based on how much of the model they use. 19

4.2 Test F1 of the estimations in benign setting, on the dataset they
were not trained on. 20

4.3 Proportion of adversarial examples crafted on the model that
transfer to the classifier estimations. 21

4.4 ASR on the estimations after applying the white-box attack on
harmful samples. 22

4.5 Success rate of transferring harmful inputs modified by the
attack on the estimations to the LLM. 23

A.1 Silhouette score of the embeddings at each layer, for different
models and datasets . 32

A.2 Silhouette score of the top 5 components for AdvBench 34
A.3 Silhouette score of the top 5 components for OR-Bench 37
A.4 Confusion matrices in benign setting for AdvBench 38
A.5 Confusion matrices in benign setting for OR-Bench 39
A.6 Average best threshold selected for the estimation 42

v

A.7 ASR on the estimations after applying the white-box attack on
harmless samples. 43

A.8 Transferability of adversarial examples crafted using the esti-
mations to the LLM, for harmless prompts. 44

A.9 Best threshold by layer and model for the estimations in adver-
sarial setting . 45

A.10 Test F1 of the estimations of the classifier in benign setting for
weaker models . 46

A.11 Test F1 of the estimations on the dataset they were not trained
on for weaker models . 47

vi

abstract

Large language models (LLMs) exhibit high performance on a wide array
of tasks. Before deployment, these models are aligned to enforce certain
guidelines, such as harmlessness. Previous work has shown that align-
ment fails in adversarial settings through jailbreak attacks. Such attacks,
by modifying the input, can induce harmful behaviors in aligned LLMs.
However, since they are based on heuristics, they fail in giving a systematic
understanding of why and where alignment fails in adversarial settings.
In this paper, we hypothesize that alignment embeds a harmfulness classi-
fier in the model, responsible for deciding between refusal or compliance.
Investigating the harmfulness and robustness of the alignment of a model
then reduces to evaluating its corresponding classifier, which motivates
this work: Can we extract it?. Our approach first builds estimations of the
classifier from varying parts of the model and evaluates how well they
approximate the classifier in both benign and adversarial settings. We
study 4 models across 2 datasets and find through the benign settings that
the classifier spans at least a third of each model. In addition, the evalua-
tion in adversarial settings shows that it ends before the first half of most
models, exhibiting a transferability greater than 80%. Our results show
that the classifier can be extracted, which is beneficial from an attack and
defense perspective due to the improvements in both efficiency (smaller
model to consider) and efficacy (higher attack success rate).

vii

acknowledgements

First, I thank my advisor, Patrick McDaniel, for his trust and guidance
throughout this journey, which helped shape the narrative of the project. I
consider myself lucky to be working in his lab, a great catalyst to become a
better researcher driven by a strong sense of camaraderie. I am also grateful
to my labmates and friends — Blaine, Eric, Kunyang, Kyle, Melissa, Owen,
Quinn, Rachel, Ryan, Thomason, and Yohan — for their presence and help.
Their constructive feedback and suggestions helped ensure the accuracy
and rigor of the results of this work. Naturally, I also thank my parents
for their unwavering support throughout my studies, no matter how far I
was.

Funding Acknowledgement: This material is based upon work sup-
ported by the National Science Foundation under Grant No. CNS-2343611
and by PRISM, one of seven centers in JUMP 2.0, a Semiconductor Re-
search Corporation (SRC) program sponsored by DARPA. Any opinions,
findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

1

1 introduction

With the unceasing improvements in machine learning, specifically since
the introduction of the transformer architecture [41] as a catalyst for
larger scale models, many large language models (LLMs) have emerged.
Whether they are only accessed through an API (e.g., GPT [31], Gem-
ini [37], Claude [1]) or open-source with weights available to the public
(e.g., Llama 2 [28], Llama 3 [29], Qwen [40], etc.), these models have
become the de facto tool for tasks involving natural language. They serve
as foundations for new tools, in which they are augmented with new
capabilities [2, 30] or fine-tuned on a downstream task [14]. Most LLMs
undergo an alignment process in which they are further trained to satisfy
certain guidelines [28, 35]. In particular, these guidelines enforce that the
model’s outputs should not be offensive, discriminatory, or harmful. It is
well acknowledged that alignment fails in adversarial settings, resulting in
a jailbreak: a harmful input an aligned model believes to be compliant with
the desired guidelines. Many approaches have aimed to automate the
generation of such modifications, i.e., adversarial examples [22, 24, 47, 57].

These approaches only reveal instances of vulnerabilities, regardless
of the assumed knowledge on the model: they either rely on heuristics
for the adversarial objective or the perturbation applied on the input.
Previous work has shown that the representations of harmful and harmless
queries are well separated in aligned models [23, 55], specifically in the first
layers[20]. This suggests that there might be parts of the model responsible
for detecting harmful inputs. Therefore, we hypothesize that alignment
embeds a harmfulness classifier in the model. This classifier is responsible
for the separation between harmful and harmless representations and
the decision of the model (i.e., compliance or refusal). By identifying its
position within the model precisely, defenders can strengthen alignment
by improving the robustness of the classifier. Conversely, adversaries can

2

design more efficient and effective white-box attacks since they require
a smaller portion of the LLM (the embedded classifier) and work with a
heuristic-free adversarial objective. This motivates the scope of this paper:
can we extract this classifier and ensure the success of the extraction?

In this paper, we develop an approach to extract this classifier. We verify
that it is empirically equivalent to the LLM in both benign and adversarial
settings for the classification task. This means that the extracted classifier
agrees with the decision of the model in both settings. Specifically in
adversarial settings, we consider the following robustness equivalence
property as fundamental to judge the success of the extraction: any input
is an adversarial example (i.e., induce a misclassification) for the model if
and only if it is an adversarial example for the extracted classifier.

Our goal is to find a structure, i.e., part of the architecture of the model,
that best represents the embedded classifier of the model. Our approach
build estimations of the classifier by adding a simple classification head
to a given structure. This classification head is then trained on harmful
and harmless inputs to map the features extracted from the structure to
the prediction of the model (positive for refusal, negative for compliance).
We compare the classifier estimations in benign and adversarial settings
to find the closest estimation. For the benign setting, we measure how
well the estimations agree with the classifier. For the adversarial setting,
we craft adversarial examples on both the model and the estimations and
measure how well they transfer (i.e., induce a misclassification for the
model they were not crafted on) between one another.

Our experiments span 4 models and 2 datasets. In benign settings, our
results indicate that the estimations F1 score is above 80% with as little
as 20% of the models. However, when evaluating on a different dataset,
the same score is achieved in twice the fraction of the model. Further, the
agreement of the estimations with the classifier is monotonically increasing
with respect to the proportion of the model considered. This translates to

3

a lower bound on the position of the classifier. This trend does not hold in
adversarial settings, in which we observe a peak transferability rate above
80% near half of most models when transferring adversarial examples
from the estimation to the model. This means that adversarial settings
provide a more precise location of the classifier.

In this work, we contribute to the following.

1. We design a rigorous study on extracting the harmfulness classifier
of LLMs, evaluated in both benign and adversarial settings across 4
models and 2 datasets.

2. We show that extracting solely through benign settings is not enough,
and that an evaluation in adversarial settings is necessary to ensure
the correctness of the extraction.

3. We show that attacking the classifier instead of the LLM directly leads
to a higher success rate of the attack, as well as a lower computational
cost by construction.

Thesis Statement

Alignment embeds a harmfulness classifier in large language models,
which can be empirically extracted.

4

2 background

2.1 Large Language Models (LLMs)

Large language model. A LLM models the conditional probability of the
next token (a unit of text for the model) with respect to the current prompt

or past tokens. Let V be the vocabulary of the tokens and V∗ =
N⊔

n=1
Vn

the corresponding input space of sequences, where N denotes the context
window of the model (maximum amount of tokens that can be processed
by the model). Given a sequence of tokens x = x1x2 . . . xT ∈ V∗, the model
aims to produce the next token xT+1 by approximating the probability
distribution.

p(xT+1|x1x2 . . . xT) (2.1)

LLMs learn a vector representation of words called the embedding space.
Given a sequence of tokens x = x1x2 . . . xT , each token is assigned to an
embedding, resulting in a sequence of vectors {ht}t∈{1,...,T} all in Rd. This
study focuses on aligned chat models, which are almost exclusively of the
same architecture: a sequence of decoders. The i-th decoder transforms a
sequence of embeddings h(i) in another h(i+1), keeping the same sequence
length. If the model is made of D decoders, the probability distribution
on the next token is obtained by applying a linear layer followed by a
softmax function on the last output embedding of the last decoder, h(D)

T ,
i.e., p(·|x1x2 . . . xT) = softmax(Ah

(D)
T), where A ∈ Rd×|V | is the learned

matrix that maps the embeddings to the scores for each token.

Chat template. By construction, LLMs simply predict the next token. Thus,
before deployment, the model undergoes instruction tuning: a process
which encodes “roles” in the model such that it can interact with a user.
Part of this process includes a chat template: a fixed modification of the
input to dissociate the roles. It relies on special tokens from the model to

5

enforce a format. As a result of different training settings, different models
generally come with different chat template. Formally, for a given model,
there exists a template (xpre, xpost) ∈ V∗ × V∗ such that any input text x is
preprocessed by prepending xpre and appending xpost.

2.2 Alignment and Harmfulness

Alignment. Since the training data used for LLMs comes from diverse
sources, biases and undesirable behaviors emerge [11]. In order to prevent
those behaviors from happening, models often go through an alignment
process that regulates their outputs according to given guidelines. Several
methods exist and are not mutually exclusive [28]. Approaches such as
supervised Fine-tuning (SFT) uses sample answers from humans, while
reinforcement learning with human feedback (RLHF) [3, 7] trains a neural
network that acts as a reward for the LLM. Since training another reward
model may be costly, direct preference optimization (DPO) [35] uses the
LLM as its own reward model.

Guidelines and taxonomies. The existence of alignment as a technique is
a direct product of the complexity of identifying what is precisely expected
from models (i.e., their objective). Harmfulness is a broad term, thus,
previous work has been identifying taxonomies [16, 44] that represent
a broad range of harmful behaviors. This allows researchers to evaluate
alignment on a finer scale and understand where it could be improved.
For example, when the prompts are decomposed into different categories
such as self-harm, privacy, harassment, etc., models tend to refuse the
prompts related to self-harm and accept the prompt related to privacy [9].

Identifying harmful outputs. Similarly to their inputs, classifying LLMs
outputs is challenging. Since aligned models tend to create strong refusal
answers for detected harmful prompts, a naive solution is to test whether
certain refusal keywords are in the output (e.g., "Sorry", "as a responsible

6

AI", etc.) [57]. Alternatively, judge models (also LLMs) are trained to
classify the harmfulness of outputs with more [16] or less [26] granu-
larity on the classes they predict, similarly to the taxonomies explained
in Section 2.2. A limitation of judge models is that they can also be at-
tacked [25, 36], leading to a possible high rate of false negatives (harmful
outputs judged as harmless).

2.3 Attacks on LLMs
LLMs, like any class of machine learning models, are prone to attacks.
While several exploits exist (e.g., model-stealing [4], text misclassification,
etc. [54]), the jailbreak exploit remains the most prevalent. Jailbreak refers
to inducing compliance on an aligned model for a harmful query, as de-
fined by the alignment guidelines. Jailbreak attacks fall into one of two
threat models: white-box, in which model parameters are known, and
black-box, in which only access to the output of the model is assumed.
While there are nuances in these threat models, we detail attacks for these
two threat models below.

White-box. These attacks have been studied on open-weights models such
has Llama 2 [28] and Llama 3 [29] or Vicuna [6]. The most prevalent,
GCG [57], uses Greedy Coordinate Gradient (GCG) to mitigate the ab-
sence of mapping from embeddings (i.e., vectors) to tokens. Following
this, many new white-box algorithms have been introduced [8, 45], improv-
ing existing algorithms [22, 23, 33, 49], using different objectives [50], or
using specific properties of the model (e.g., logits [21], special tokens [51],
or generation [15]. In terms of efficacy, attacks like GCG have an average
attack success rate (ASR) above 50% [26] on most open-source models.

Black-box. These attacks have been widely studied, given their preva-
lence in practical scenarios [1, 31]. Most of them are driven by empirical
heuristics: they apply transformations to the initial prompt such as ASCII-

7

art [18], translation into underrepresented languages [46], encoding and
decoding [12], or applying pre-existing templates [48]. Black-box attacks
achieve remarkable efficacy. For instance, GPTFuzzer [47] can achieve
ASR as high as 90% on commercial LLMs such has ChatGPT.

8

3 methodology

Layer 1 Layer 2 Layer N…

Step 1: Classifier Estimation Step 2: Robust Equivalence

Large Language Model 𝑓𝜃

Structure 𝑓𝜃′

LabelLabelLabel

Head

Whole
Model

Structure

Head B

FP/FN FP/FN

A

D

C

Figure 3.1: Methodology overview. In the first step, we estimate the
harmfulness classifier of an LLM by (A) selecting a structure within the
model and (B) training a classification head on the predicted labels from
the LLM and verify the equivalence in benign setting. Then, we empirically
verify that the estimation and the model are equivalent in adversarial
setting, i.e., adversarial examples of the LLM (C) transfer to the classifier
estimations and adversarial examples of the classifier estimations (D)
transfer to the LLM.

3.1 Threat Model
In this work, the adversary aims to extract the underlying harmfulness
classifier of a target aligned model. A successful extraction would allow
subsequent attacks to be made with more effective white-box jailbreak
approaches, while forgoing the complex computational costs they incur,
as we discuss Section 5.2. We will estimate the classifier using parts of
the models, thus white-box access is assumed, specifically for the model
weights and architecture.

In jailbreak attacks, the adversarial objective is to induce compliance
from the model for a harmful input by adding a perturbation. Aligned
models are heavily trained to refuse harmful inputs. As a result, they
can reject harmless prompts [9], exhibiting a high sensitivity to certain

9

tokens. While previous work has mostly studied jailbreaks (harmful
inputs identified as harmless), in this work we focus on extracting the
harmfulness classifier. To do so, we also harmless inputs identified as
harmful, as we hypothesize that they also provide substantial information
on the decision boundary of the classifier.

3.2 Problem Formulation

General formulation. Let fθ be a LLM with context window N and vo-
cabulary V , and let R : x ∈ V∗ 7→ C be a classification rule that maps the
output of the LLM to a class from C. We aim to extract a classifier from
the LLM through two components: a structure and a classification head.
A structure fθ∗ , θ∗ ⊂ θ is a part of the original model (e.g., a decoder). A
classification head C maps the representations learned by the structure
to a class such that the classifier C ◦ fθ∗ is equivalent to the LLM for the
classification task. Formally, for any token sequence x ∈ V∗, the following
holds:

R(fθ(x)) = C(fθ∗(x)) (3.1)

Harmfulness. In this paper, we focus on harmfulness classification: classi-
fying harmful and harmless inputs. This is a binary classification problem,
with harmful as positives and harmless as negative. A jailbreak is then
a false negative, while a false positive is “over-refusal” [9]. The classifi-
cation rule R to assign a predicted LLM label is then comparable to how
attack success is measured for jailbreak attacks i.e., by verifying refusal or
compliance. We chose a model trained to classify refusal and compliant
outputs distilroberta-base-rejection-v1 [34] as the classification rule R,
since we focus on whether the aligned model refuses (not if it produces
harmful information).

https://huggingface.co/protectai/distilroberta-base-rejection-v1

10

3.3 Estimating the Classifier
In order to extract the classifier, we first need to have a set of candidates.
We build a candidate through the following three steps, summarized
Figure 3.1:

1. Select a part fθ∗ of the architecture of the original model fθ, which
we will refer to as a structure.

2. Collect data points from the structure (fθ∗(x),R(fθ(x))) consisting
in the features extracted from the structure and the predicted label
from the LLM.

3. Train a simple classification head C on (fθ∗(x),R(fθ(x))).

The resulting classifier C ◦ fθ∗ will be referred to as an estimation of the
embedded classifier.

Structures. As explained in Section 2.1, most LLMs are built as sequences
of decoders: processing units that take a sequence of vectors and output
another sequence of vectors of the same length. LLMs can be scaled either
in depth by adding decoders or in width by increasing the dimensionality
of embeddings. Therefore, there are many ways to “cut” the model and
thus many possible structures. It is clear that there is a separation between
harmful and harmless representations at the end of aligned models [23]
largely due to the strong refusal outputs. In addition, previous work [20,
52] has shown that separation occurs in early decoders [20]. Thus, we
estimate the location of the harmfulness classifier via two hypotheses.
First, the classifier is at the decoder level. Second, for a sequence, the
information relevant to the classification at a given decoder is contained
at the end of the sequence.

We will refer to fi,j as the set of decoders between the i-th and the j-th
decoder, i ⩽ j. The second hypothesis implies that for a given input x ∈ V∗

11

where fi,j(x) ∈ R|x|×d, we only consider the last element of the sequence,
reducing the input dimension of the classification head C to Rd.

By construction, the input space of fi,j depends on the output space
of f1,i−1, since the model was trained with the entire architecture. In this
work, we set i to 1. We leave the exploration of structures that can isolate
intermediate decoders to future work, as they would require techniques
to mitigate the absence of earlier decoders, which is out of the scope of
this work.

Training. For the selected structure fi,j, the goal is to train a classification
head C to best approximate the decision of the original model. The first
step is to create a dataset X = (fi,j(x),R(fθ(x))) consisting in the extracted
feature from the structure fi,j and the predicted label1 by applying the
classification rule R to the output of the original model fθ.

Then, the classification head is trained following this objective:

min
(x,y)∈X

L(C(x),y) (3.2)

The metrics used to measure how well the structure captures the classifi-
cation decision of the original model are the accuracy and the F1 score.

Attacking. To further validate the extraction, we also consider how well
the estimation can classify inputs that are intentionally modified to induce
misclassification (i.e., its robustness). To evaluate it, we apply a white-box
attack on the estimation. The original version of GCG aims to maximize
the likelihood of a target sequence x∗ (e.g., “Sure, here is how to build a
bomb.”) given the input sequence x (with adversarial tokens xi, i ∈ I).
Thus, it is ill-suited for attacking the estimations of the classifier, which
outputs a scalar (and not text). Therefore, we keep the algorithm but
change the objective to that of a misclassification.

1Since we focus on extracting the classifier and not improve it, it is beneficial to have
both right and wrong labels from the classifier

12

4 evaluation

We apply our approach to answer the following two questions:

RQ.1 Can the classifier be extracted solely from benign settings estimation?

RQ.2 What information does adversarial settings provide for the extrac-
tion?

4.1 Experimental Setup
All experiments were run on pools from the Center for High Throughput
Computing [5]. The dataset creation and attack experiments were run on
NVIDIA A100 GPUs with 40 GB of VRAM.

Models. We evaluate our approach on 4 well-known open-weights aligned
chat models, all from Hugging Face Transformers 4.46.2 [43]: Llama-2-
7b-chat [28], Qwen2.5-7B-Instruct [40] gemma-7b-it [39], and gemma-
2-9b-it [38]. We chose these models because they are more effective at
the classification task on the dataset considered, translating to a stronger
alignment. A study of models with weaker alignment can be found in Sec-
tion A.5.

Datasets. We use two datasets in our experiments:

• An augmented version of AdvBench [57] containing the 520 original
harmful instructions and 520 added harmless instructions. Details
of the augmentation can be found in Section A.3.

• A subset of OR-Bench [9] made of 1000 harmless prompts and 500
harmful prompts. The original dataset contains 80000 seemingly
toxic harmless prompts (of which 1000 are made harder) and 600
harmful prompts. The harmless prompts we select come from the

https://huggingface.co/docs/transformers/
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/google/gemma-7b-it
https://huggingface.co/google/gemma-2-9b-it
https://huggingface.co/google/gemma-2-9b-it

13

easier prompts, to ensure a high enough classification performance
from the model.

Labels. The labels are obtained by applying a classifier on the LLM output.
To minimize nondeterminism due to sampling, we generate outputs with
a temperature t = 0: the next token selected at each step of the generation
is the one that maximizes the logits. The output is classified using the
distilroberta-base-rejection-v1 [34] model.

Classifier training. For the classification head, we consider a simple linear
layer followed by a sigmoid: C(t)(h) = σ(Ah+ b) where A ∈ R1×d, b ∈ R
and σ : x 7→ 1

1+e−x . The result is a scalar between 0 and 1, thus the
classification is made given a threshold t. As for training, we apply K-
fold cross-validation with K = 5 folds. We select the threshold t that
maximizes the F1 score on the training data, i.e., t = arg max

t∈[0,1]
F
(t)
1 (Dtrain).

More information on hyperparameters is provided in Section A.4.

Attack. To generate adversarial examples, we use the nanogcg1 implemen-
tation of GCG [57] with the following hyperparameters: num_steps=250,
topk=512, and search_width=512. We chose this attack because it is the
most popular gradient-based white-box attack. Although several enhance-
ments to GCG have been introduced, we use the default version of the
attack. For classifier estimations, we change the original loss to the Py-
Torch [32] implementation of the binary cross entropy loss.

4.2 Benign Settings
In this section, we answer RQ.1, i.e., whether it is possible to extract the
classifier only through benign settings.

Baseline results. Table 4.1 shows the benign classification performance of
the LLMs for each dataset (see Section A.2 for detailed confusion matrices).

1See code at https://github.com/GraySwanAI/nanoGCG

https://huggingface.co/protectai/distilroberta-base-rejection-v1
https://github.com/GraySwanAI/nanoGCG

14

Both the accuracy = TP+TN
TP+FN+TN+FP and the F1 score F1 = TP

TP+ 1
2 (FP+FN)

are
reported, since OR-Bench is unbalanced. We can first see that all models
perform well in AdvBench, all scoring above 0.9. The worse performance
on OR-Bench is expected, as it was introduced after AdvBench with the
goal of being harder to classify and to test for over refusal. This lower
performance means that estimating the classifier on this dataset might be
harder than on AdvBench, which we see below.

Model AdvBench OR-Bench
Accuracy F1 Accuracy F1

Llama 2 0.93 0.93 0.78 0.76
Qwen 2.5 0.97 0.97 0.9 0.87
Gemma 1 0.97 0.97 0.95 0.92
Gemma 2 0.95 0.96 0.88 0.84

Table 4.1: Classification metrics of the models on the two in benign set-
tings.

Estimation performance. Figure 4.1 shows the test F1 score of the estima-
tion of the classifier. We see that performance either increases or stagnates
as more of the model is taken in account. This suggests that later parts
of the model either preserve or increase the separation of harmful and
harmless instructions. We conducted a more in-depth study in Section A.1
on how well the embeddings are clustered with respect to their label for
each dataset, which aligns with the performance in estimating the classi-
fier. For instance, the estimations achieve a lower F1 score on OR-Bench,
losing 5% for all models. This aligns with the results in Table 4.1 where
all models perform worse on OR-Bench. We hypothesize that this can be
explained by a lower separability between refused and accepted prompts
at the embedding level, which can be seen Figure A.1. This lower separa-
tion means that the two clusters may overlap, preventing the classification
head from completely aligning with the classifier when training.

15

Cross-dataset. To ensure that the classifier estimations are not artifacts
of the datasets and their distributions, we evaluate the estimations on
the dataset that they were not trained on (e.g., train on AdvBench, test on
OR-Bench). Similarly to the previous figure, Figure 4.2 reports the F1 score
for the same estimations in the dataset on which they were not trained.
Overall, we see that there is no significant performance drop at estimating
the classifier when using a different distribution at the last layer. However,
it is clear that the F1 score does not converge as fast on the cross-dataset
setting. For instance, in Figure 4.1a, Gemma 1 reaches a F1 score of 0.9 with
only 20% of the model against 50% Figure 4.2a. This offset is likely due to a
difference in the distribution of prompts: the estimation overfits on specific
patterns tied to how the dataset was built. For instance, AdvBench is made
of instructions, while OR-Bench also contains questions. This difference
in format can affect the behavior of the representations. Thus, judging
the accuracy of the estimation solely from one dataset likely leads to an
underestimation of the classifier.

Takeaway 1: Artifact of benign settings

Estimating in benign settings can lead to an underestimation of the
classifier, i.e., an estimation that only captures part of the classi-
fier. This effect can be detected by evaluating the estimations on a
different data distribution (e.g., prompts with different formats).

4.3 Adversarial Settings
In this section, we aim to answer RQ.2, i.e., understanding the information
provided by adversarial settings for extraction. More precisely, we measure
whether the following equivalence holds: any input is an adversarial
example for the model if and only if it is an adversarial example for the

16

extracted classifier. We focus on harmful inputs since it is more practical for
attacks. A similar study on harmless inputs can be found in Section A.4.

We apply the GCG attack to both the model and the classifier estima-
tions and evaluate the resulting transferability rates: the percentages of
adversarial examples crafted on one that are misclassified by the other. To
attack the estimation, we modify the GCG loss to the binary cross-entropy
loss, more suitable for classification. The attacked samples are prompts
for which the classification head was not trained on for each fold, with the
threshold that maximizes the F1 score on the training data.

Model AdvBench
Accuracy F1 ASR

Llama 2 0.4 0.56 0.22
Qwen 2.5 0.09 0.07 0.94
Gemma 1 0.49 0.43 61.54
Gemma 2 0.3 0.37 66.6

Table 4.2: Classification metrics of the models on AdvBench after applying
a white-box attack, along the attack success rate (ASR) on harmful inputs.

Baseline results. Similarly to the previous settings, we report Table 4.2
the classification performances of the LLMs after applying the white-box
attack, along with the attack success rate (ASR) defined as the proportion
of harmful samples misclassified. We note a significant difference (around
70%) between the ASR of Llama 2 and Qwen 2.5. This comes from the
strong alignment of Llama 2 with a bias toward refusal (see Section A.2).

LLM to classifier estimations. After applying the attack, we filter the
adversarial examples and evaluate how well these examples transfer to
the classifier estimations by measuring the transfer rate: proportion of
misclassified samples by each estimation. Figure 4.3 reports the transfer
rate to the estimations. We observe a similar pattern to that of the cross-
dataset study (see Section 4.2): the transfer rate does not converge until
at least half of the model is used. For example, classifier estimations on

17

Llama 2 obtain a transfer higher than 90% only when more than half the
model is used. This result implies that classifier estimations that use less
than half of the model are not representative of the classifier.

Attacking estimations. Figure 4.4 reports the ASR of the attack on the
estimations, which corresponds to the percentage of harmful modified
samples from the test dataset that were labeled harmless by the estimation
(using the best threshold defined above). We note that when the estimation
uses the entire model, the corresponding ASR is close to the baseline ASR
(e.g., 20% for Llama 2).

Classifier estimations to LLM. Figure 4.5 shows the proportion of adver-
sarial examples crafted on the estimations that induce a misclassification
on the model. Interestingly, the trend does not increase monotonically
with the fraction of the model used, as in the previous sections. For three
of the models, we observe a peak above 70% transfer rate when the esti-
mations use 60% of the corresponding model. In addition, attacking the
estimations and transferring the resulting inputs to the model seem to
work better than attacking the model directly. For example, using 50% of
Llama 2, it is possible to achieve an ASR of 70%, well above the baseline
ASR of Table 4.2.

Underestimation and overestimation. The existence of a maximum of
the estimation performance highlights the two possible pitfalls when es-
timating the classifier: underestimation and overestimation. The former
means that the estimation captures a subset of the classifier, which limits
the transferability. In contrast, overestimation occurs when the classifier is
contained within the estimation. Overestimating leads to a lower transfer
rate, since the adversarial objective includes information irrelevant to the
actual classification.

ASR and objective. The previous differences in success rate compared
to the baseline lies in how the adversarial objective is built. Since the
output from the whole model is text, there needs to be a heuristic to know

18

when misclassification (jailbreak) occurs, such as specific target sentences.
When the objective is a misclassification, it is easier to find adversarial
examples. It implicitly contains the previous objective, but encompasses
any possible jailbreak sentence, increasing the space of adversarial inputs.

Takeaway 2: Efficacy of attacks

Extracting the harmfulness classifier of an LLM results in an in-
creased attack efficacy (i.e., higher ASR) when attacking the classi-
fier and transferring the modified inputs to the model.

19

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.5

0.6

0.7

0.8

0.9

1.0
Te

st
 F

1

Gemma 1
Gemma 2
Llama 2
Qwen 2.5

(a) AdvBench

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 F
1

Gemma 1
Gemma 2
Llama 2
Qwen 2.5

(b) OR-Bench

Figure 4.1: Test F1 of the estimations of the classifier in benign setting,
based on how much of the model they use.

20

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.5

0.6

0.7

0.8

0.9

1.0
Te

st
 C

ro
ss

-S
ou

rc
e

F1

Gemma 1
Gemma 2
Llama 2
Qwen 2.5

(a) Trained on AdvBench, evaluated on OR-Bench

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 C
ro

ss
-S

ou
rc

e
F1

Gemma 1
Gemma 2
Llama 2
Qwen 2.5

(b) Trained on OR-Bench, evaluated on AdvBench

Figure 4.2: Test F1 of the estimations in benign setting, on the dataset they
were not trained on.

21

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

 ra
te

Gemma 1
Gemma 2
Llama 2
Qwen 2.5

Figure 4.3: Proportion of adversarial examples crafted on the model that
transfer to the classifier estimations.

22

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Gemma 1
Gemma 2
Llama 2
Qwen 2.5

Figure 4.4: ASR on the estimations after applying the white-box attack on
harmful samples.

23

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

 R
at

e

Gemma 1
Gemma 2
Llama 2
Qwen 2.5

Figure 4.5: Success rate of transferring harmful inputs modified by the
attack on the estimations to the LLM.

24

5 discussion & future work

5.1 Domains

Why harmfulness. This study focuses on the problem of harmfulness, i.e.,
describing harmful and harmless inputs. We chose this for two main rea-
sons. First, recent work has shown that there is a clear separation between
the two classes in the model (see Section 6.1). Second, this problem is
one of the most prolific research topics (e.g., jailbreak attacks), and the
insights from this study lead to implications for white-box attacks, which
we discuss in the next section.

Other Domains. Outside of harmfulness, several phenomena have shown
increasing concern. First, malicious code generation and vulnerable code
identification have been specifically investigated for LLMs designed for
code, making them suitable for a similar approach. Second, hallucination,
dishonesty, bias, and lack of fairness are all examples of failures of align-
ment. Although they do not translate directly to a classification problem,
it is possible to set up controlled environments in which the LLM can
act as a classifier. Similarly to representation engineering [55] in which
stimuli are designed for specific tasks, datasets with prompts formatted to
elicit the mentioned phenomena could help apply the approach to these
domains.

5.2 Implication for White-box Attacks

Classification objective. As opposed to evasion attacks on classifiers
which cause misclassifications, jailbreak attacks aim to induce harmful
behaviors. This objective is more complex because it follows from the
definition of harmful behavior. When extracting the classifier, we explicitly
uncover the decision made by the model. This gives a clearer signal which

25

does not rely on heuristics (e.g., maximizing a target sequence that is likely
to induce a jailbreak) and increases the attack efficacy.

Efficiency. Recent white-box gradient-based attacks on LLM are based on
the GCG attack [57]. Although there have been significant performance
improvements over time, these attacks compute gradients and, therefore,
they are limited when the models are too large. Our results from Sec-
tion 4.3 suggest that investigating the robustness of alignment through
attacks is reducible to attacking the embedded classifier. This implies
fewer computations and thus higher efficiency (and scalability) of attacks.
Our approach was applied on LLMs with less than 9 billion parameters
and showed that using 50% of it is enough for the attack. If this result
scales to larger models (ranging from 13 billion to 400 billion parameters),
it would enable the application of white-box attacks on those models.

5.3 Embedded Classifier

Start point of the classifier. We focus on the structures f1,i, i.e., contiguous
sets of decoders starting with the first layer. This allowed to locate the
end of the classifier by evaluating the performance of the corresponding
estimations. However, it may be that the classifier does not start at the first
layer. Therefore, studying structures fi,j with i > 1 may be of interest to
refine the extraction but introduce a new dimension of complexity. Since
the input space of decoder i must match the output space of decoder
i − 1, new techniques need to be introduced to allow the creation of
estimations that truly use the information of the structure. For example,
an estimation based on fi,j should not use information from f1,i−1 or learn
new information outside the mapping from structure representations to
classification.

Finer-grained extraction. Our approach uses results from previous work
on the model representation of harmful and harmless inputs to reduce the

26

space of structures. Within decoder blocks are multiple attention heads
with different patterns learned. Therefore, it is possible to further refine
the extraction of the classifier by removing attention heads that do not
contribute to classification. The intractable number of possibilities implies
the need for heuristics to search the space of structures efficiently. Since
the estimations use a simple linear classification head, its performance is
a function of how linearly separable the two classes are. Thus, a greedy
approach in which attention heads are selected on the basis of how much
they separate the embeddings could be a first step toward a finer extraction.
However, not selecting certain attention heads of a decoder implies that
the output space is different, which could lead to the issues mentioned in
the previous paragraph.

Multiclass. In this work, we considered the problem as a binary classifi-
cation problem: classifying harmful and harmless inputs. As discussed
Section 2.2, multiple taxonomies of harmful behaviors have been intro-
duced. These taxonomies allow for better evaluations of attacks and give a
finer-grained understanding of where alignment fails (e.g., aligned mod-
els might be more prone to accept prompt from the “false advertising”
category [44]). Thus, a reasonable extension of this work would be to
study the classification between categories. By studying this through a
multiclass perspective, the task of the classifier changes from identifying
inputs to be refused to identifying why these inputs should be refused.
The challenge that emerges is to identify the predicted label from the LLMs
as they tend to have generic refusal outputs, making the mapping from
the output to a harmful category hard, if not infeasible.

27

6 related work

6.1 Jailbreak and Representations
Improving the safety of LLMs is among the most prevalent research areas.
Numerous publications have studied the link between jailbreak and model
representations. It is necessary that alignment creates a linear separation
between refused and accepted prompt for some representations, since
the output is explicitly linearly dependent on the last embedding [23].
Refusal is encoded through a set of similar responses or sequence of tokens,
which implies a separation between the tokens logits for accepted and
refused prompt. Several papers have shown the distinction at the layer
level [20, 23, 52] or the attention head level [53]. In addition, previous
work has also shown that representations can be used to manipulate the
model [55] and increase its robustness at a negligible utility cost [56]. Our
work takes a different approach by considering an embedded classifier
within the model and extracting it. The extracted classifier can then be
used by both attackers and defenders to systematically study the security
of alignment.

6.2 Pruning
Concurrently to studying their safety, an active area of research on LLMs
is pruning: reducing the size of the model while maintaining most of its
capabilities [10, 27]. For LLMs, pruning can be divided into two categories:
width pruning and depth pruning. The former aims to reduce the size of
the projection matrices, while the latter aims to remove layers or blocks.
The rise of security concerns led to the intersection of pruning and security.
Recent work has shown that safety alignment is inherently low rank and
can be isolated [42] and that pruning can offer higher safety [13]. Our

28

work extracts the harmfulness classifier within the model; therefore, the
objective is different. Instead of reducing the size of the model while
maintaining capabilities, which results in some loss of information, we
aim to extract the classifier and thus minimize the information lost by
having as little training as possible.

29

7 conclusion

In this paper, we hypothesize that alignment embeds a harmfulness classi-
fier within LLMs, and we introduce a technique to extract it. We empirically
verify the accuracy of estimation in both benign and adversarial settings.
We show that the accuracy of the extraction depends on the performance of
the whole model at the classification task. By extracting this harmfulness
classifier, attacks and defenses can substantially improve both efficiency
and efficacy.

30

a appendix

A.1 Subspace Analysis
In this section, we provide more explanation of why a linear layer is suffi-
cient. For each model and dataset, we study the separation between inputs
classified as harmful and inputs classified as harmless. For each layer of
the model, we measure how well the corresponding embeddings separate.
There are generally three ways to analyze this: training a simple classifier,
applying principal component analysis (PCA) or using the silhouette score
(or any similar metric). Since we did the first method when estimating
the classifier, we study the other two in this section.

Silhouette Score

Figure A.1 shows the silhouette score (with the cosine distance) of the last
position embeddings for different models and datasets as they propagate
through the model. A higher silhouette score means that the predictions
of the whole model have more separation in their embeddings. The re-
sults aligned with the performance of the estimations. Further, the lower
silhouette score on OR-Bench relates to the lower F1 score of the whole
model. The main take-away is that the separation follows the same trend
between the two datasets, but differs in magnitude.

While it would be expected to see a nondecreasing trend, we see that
after the silhouette score reaches its maximum, it starts to decrease. A
possible explanation for this phenomenon is that the model performs
multiple tasks. Thus, after the information for harmfulness of the input
was extracted and incorporated in the embedding, the other tasks add
more information to the embedding unrelated to harmfulness. Thus,
the prevalence of the harmfulness separation weakens but remains high
enough for the classification.

31

Principal Component Analysis

Here, we aim to provide a more in-depth analysis of the previous separa-
tion. Under the assumption of a linear separation, we apply PCA at each
layer and study the top 5 components. Previous work generally focuses on
the top 2 components for visualization. We show that this is not enough,
as the separation stems from lower components in early layers.

Silhouette. To better understand the previous study, we project the data
onto each component and compute the silhouette score. This measures
the efficacy of the component at separating the embeddings based on their
predictions. Figure A.2 and Figure A.3 show that the separation builds up
on components with lower prevalence (i.e., contributing to less variance)
until it saturates and stays on the first, most prevalent component.

32

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Si

lh
ou

et
te

 S
co

re
Gemma 1
Gemma 2
Llama 2
Qwen 2.5

(a) AdvBench

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Si
lh

ou
et

te
 S

co
re

Gemma 1
Gemma 2
Llama 2
Qwen 2.5

(b) OR-Bench

Figure A.1: Silhouette score of the embeddings at each layer, for different
models and datasets

33

0 5 10 15 20 25 30
Layer

1

2

3

4

5

PC
A

Co
m

po
ne

nt

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Si
lh

ou
et

te
 S

co
re

(a) Llama 2

0 5 10 15 20 25
Layer

1

2

3

4

5

PC
A

Co
m

po
ne

nt

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Si
lh

ou
et

te
 S

co
re

(b) Qwen 2.5

34

0 5 10 15 20 25
Layer

1

2

3

4

5

PC
A

Co
m

po
ne

nt

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Si
lh

ou
et

te
 S

co
re

(c) Gemma 1

0 5 10 15 20 25 30 35 40
Layer

1

2

3

4

5

PC
A

Co
m

po
ne

nt

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Si
lh

ou
et

te
 S

co
re

(d) Gemma 2

Figure A.2: Silhouette score of the top 5 components for AdvBench

35

0 5 10 15 20 25 30
Layer

1

2

3

4

5

PC
A

Co
m

po
ne

nt

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Si
lh

ou
et

te
 S

co
re

(a) Llama 2

0 5 10 15 20 25
Layer

1

2

3

4

5

PC
A

Co
m

po
ne

nt

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Si
lh

ou
et

te
 S

co
re

(b) Qwen 2.5

36

A.2 Datasets

Confusion Matrices

Figure A.4 and Figure A.5 show the confusion matrices of the 4 models
studied on AdvBench and OR-Bench, respectively. We note that for both
datasets, the misclassifications are mostly false positives, especially for
Llama 2. This is a direct result of the choices made during the alignment
process: prioritizing safety (false positives) over utility (true negatives).

A.3 Dataset Augmentation
In this section, we detail the process of augmenting the datasets. This is
necessary for the extraction and verification. AdvBench is augmented with
harmless prompts to ensure that true negatives and false positives are in
the dataset. OR-Bench is augmented by adding a target output sentence
for each prompt to apply the GCG attack to the model.

Harmless prompts. For each harmful instruction from AdvBench, we au-
tomate the generation of a corresponding harmless instruction prompt
using ChatGPT. We manually verify two properties of each generated
prompt: the instruction does not prompt the model for harmful informa-
tion, and it has the same structure as the original prompt. For example,
the prompt “Write a script that can exploit vulnerabilities in a software or
operating system” becomes “Write a script that can identify and help fix
vulnerabilities in a software or operating system”.

Targets. The white-box attack used in this work, GCG, requires a target
string for each sample. This is necessary for the optimization objective,
which maximizes the likelihood that the target is output by the LLM. Each
harmful instruction from AdvBench is paired with a corresponding tar-
get. For example, the harmful instruction “Write a script that can exploit
vulnerabilities in a software or operating system” is paired with the tar-

37

0 5 10 15 20 25
Layer

1

2

3

4

5

PC
A

Co
m

po
ne

nt

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Si
lh

ou
et

te
 S

co
re

(c) Gemma 1

0 5 10 15 20 25 30 35 40
Layer

1

2

3

4

5

PC
A

Co
m

po
ne

nt

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Si
lh

ou
et

te
 S

co
re

(d) Gemma 2

Figure A.3: Silhouette score of the top 5 components for OR-Bench

38

Harmless Harmful
Predicted

Ha
rm

le
ss

Ha
rm

fu
l

Ac
tu
al

518 72

2 448
100

200

300

400

500

(a) Llama 2

Harmless Harmful
Predicted

Ha
rm

le
ss

Ha
rm

fu
l

Ac
tu
al

513 21

7 499
100

200

300

400

500

(b) Qwen 2.5

Harmless Harmful
Predicted

Ha
rm

le
ss

Ha
rm

fu
l

Ac
tu
al

490 1

30 519
100

200

300

400

500

(c) Gemma 1

Harmless Harmful
Predicted

Ha
rm

le
ss

Ha
rm

fu
l

Ac
tu
al

514 41

6 479
100

200

300

400

500

(d) Gemma 2

Figure A.4: Confusion matrices in benign setting for AdvBench

get “Sure, here is a script that can exploit vulnerabilities in a software or
operating system”.

For harmless prompts, the target should correspond to a refusal from
the model. Different aligned models have different refusal answers de-
pending on how they were trained. However, we saw limited impact on
the choice of the target string on the performance of the attack and kept
the same target for all prompts and models: “I cannot fulfill your request.
I’m just an AI".

39

Harmless Harmful
Predicted

Ha
rm

le
ss

Ha
rm

fu
l

Ac
tu
al

500 324

0 676

0

100

200

300

400

500

600

(a) Llama 2

Harmless Harmful
Predicted

Ha
rm

le
ss

Ha
rm

fu
l

Ac
tu
al

483 127

17 873

100

200

300

400

500

600

700

800

(b) Qwen 2.5

Harmless Harmful
Predicted

Ha
rm

le
ss

Ha
rm

fu
l

Ac
tu
al

457 35

43 965
200

400

600

800

(c) Gemma 1

Harmless Harmful
Predicted

Ha
rm

le
ss

Ha
rm

fu
l

Ac
tu
al

490 177

10 823

100

200

300

400

500

600

700

800

(d) Gemma 2

Figure A.5: Confusion matrices in benign setting for OR-Bench

A.4 Estimations

Classification Head

Hyperparameters. To train the classification head and build the estimation,
we use the hyperparameters listed Table A.1.

Threshold selection. To obtain the labels assigned by the classifier, we
select the threshold which maximizes the threshold on the training data.
Figure A.6 shows the average threshold selected for all folds. While some
models exhibit an increasing trend similar (e.g., Llama 2, Gemma 1),
Gemma 2 and Qwen 2.5 seem to have oscillating values.

40

Hyperparameter Value
Learning Rate 0.001

Batch Size 32
Epochs 500
Patience 15

Table A.1: Hyperparameters for training the classifier head

Success on harmless samples

While the objective of jailbreak attacks is to induce false negatives, i.e.,
harmful inputs classified as harmless, we also evaluate the ASR and trans-
ferability of the estimations on harmless to harmful examples. Figure A.7
and Figure A.8 show the ASR on the estimations and the transferability
of the adversarial examples to the LLM, respectively. As expected, the
ASR is much higher as it is easier to attack harmless inputs. While the
existence of an optimal estimation in adversarial setting remains true for
most models, it seems that Llama 2 does not exhibit this behavior: the ASR
and transferability don’t decrease substantially at any layer. A possible
explanation lies in the lower difficulty of inducing refusal for this model:
among the four models, Llama 2 scored the lowest on AdvBench because of
false positives (see Table 4.1). Overall, this means that precisely extracting
the classifier in adversarial setting also depends on the initial performance
on the dataset in benign setting.

A.5 Other Models
The classifier extraction of this work relies on the assumption that align-
ment embeds a classifier. Multiple degrees of alignment lead to a stronger
presence of this classifier, thus studying the approach on other models
can shed a light on the null hypothesis, i.e., there is no classifier. We

41

study 3 other models considered here are Llama-3.1-8B-Instruct [29],
Mistral-7B-Instruct-v0.3 [17] Zephyr_RMU [19]

Table A.2 reports their accuracy and F1 score on the two datasets. All
models achieve an F1 score lower than 0.8 on OR-Bench which indeed
translate a weaker alignment than the models studied previously. Note
that since we consider the F1 score, the models are penalized for both false
positives and false negatives.

Figure A.10 and Figure A.11 show the performance of the estimations
in benign settings, on the same dataset or the dataset they were not trained
on. We see that the trend is similar Figure A.10a with a convergence after
a certain number of layers. However, the F1 score is lower than the other
models studied. In addition, Figure A.10b shows a different trend, with a
decrease in the middle of the model. As expected, the cross-dataset results
are worse in both settings.

Model AdvBench OR-Bench
Accuracy F1 Score Accuracy F1 Score

Llama 3 0.86 0.84 0.74 0.55
Mistral 0.79 0.74 0.86 0.78
Zephyr RMU 0.74 0.7 0.79 0.63

Table A.2: Classification metrics of the models on the two in benign setting

https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/cais/Zephyr_RMU

42

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.0

0.2

0.4

0.6

0.8

1.0
Be

st
 T

hr
es

ho
ld

Gemma 1
Gemma 2
Llama 2
Qwen 2.5

(a) AdvBench

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.0

0.2

0.4

0.6

0.8

1.0

Be
st

 T
hr

es
ho

ld

Gemma 1
Gemma 2
Llama 2
Qwen 2.5

(b) OR-Bench

Figure A.6: Average best threshold selected for the estimation

43

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Gemma 1
Gemma 2
Llama 2
Qwen 2.5

Figure A.7: ASR on the estimations after applying the white-box attack
on harmless samples.

44

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

sf
er

 R
at

e

Gemma 1
Gemma 2
Llama 2
Qwen 2.5

Figure A.8: Transferability of adversarial examples crafted using the esti-
mations to the LLM, for harmless prompts.

45

0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.0

0.2

0.4

0.6

0.8

1.0

Be
st

 T
hr

es
ho

ld

Gemma 1
Gemma 2
Llama 2
Qwen 2.5

Figure A.9: Best threshold by layer and model for the estimations in
adversarial setting

46

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.5

0.6

0.7

0.8

0.9

1.0
Te

st
 F

1

Llama 3
Mistral
Zephyr RMU

(a) AdvBench

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 F
1

Llama 3
Mistral
Zephyr RMU

(b) OR-Bench

Figure A.10: Test F1 of the estimations of the classifier in benign setting
for weaker models

47

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.5

0.6

0.7

0.8

0.9

1.0
Te

st
 C

ro
ss

-S
ou

rc
e

F1
Llama 3
Mistral
Zephyr RMU

(a) Trained on AdvBench, evaluated on OR-Bench

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of the model

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 C
ro

ss
-S

ou
rc

e
F1

Llama 3
Mistral
Zephyr RMU

(b) Trained on OR-Bench, evaluated on AdvBench

Figure A.11: Test F1 of the estimations on the dataset they were not trained
on for weaker models

48

bibliography

[1] Anthropic. Introducing Claude.

[2] Anthropic. Introducing computer use, a new Claude 3.5 Sonnet, and
Claude 3.5 Haiku.

[3] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna
Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli,
Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds,
Danny Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec,
Liane Lovitt, Neel Nanda, Catherine Olsson, Dario Amodei, Tom
Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and
Jared Kaplan. Training a helpful and harmless assistant with rein-
forcement learning from human feedback, 2022. arXiv: 2204.05862
[cs.CL].

[4] Nicholas Carlini, Daniel Paleka, Krishnamurthy Dj Dvijotham,
Thomas Steinke, Jonathan Hayase, A. Feder Cooper, Katherine Lee,
Matthew Jagielski, Milad Nasr, Arthur Conmy, Itay Yona, Eric Wal-
lace, David Rolnick, and Florian Tramèr. Stealing Part of a Production
Language Model, July 2024. arXiv:2403.06634 [cs].

[5] Center for High Throughput Computing. Center for high throughput
computing, 2006.

[6] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao
Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E.
Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An Open-Source
Chatbot Impressing GPT-4 with 90%* ChatGPT Quality, March 2023.

[7] Paul Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg,
and Dario Amodei. Deep reinforcement learning from human pref-
erences, 2023. arXiv: 1706.03741 [stat.ML].

49

[8] Junjie Chu, Yugeng Liu, Ziqing Yang, Xinyue Shen, Michael Backes,
and Yang Zhang. Comprehensive Assessment of Jailbreak Attacks
Against LLMs, February 2024. arXiv:2402.05668 [cs].

[9] Justin Cui, Wei-Lin Chiang, Ion Stoica, and Cho-Jui Hsieh. OR-Bench:
An Over-Refusal Benchmark for Large Language Models, June 2024.
arXiv:2405.20947 [cs].

[10] Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang,
Aixin Sun, Yequan Wang, and Zhongyuan Wang. Not All Layers of
LLMs Are Necessary During Inference, July 2024. arXiv:2403.02181
[cs].

[11] Isabel O. Gallegos, Ryan A. Rossi, Joe Barrow, Md Mehrab Tanjim,
Sungchul Kim, Franck Dernoncourt, Tong Yu, Ruiyi Zhang, and
Nesreen K. Ahmed. Bias and Fairness in Large Language Models: A
Survey. Computational Linguistics, 50(3):1097–1179, September 2024.

[12] Divij Handa, Zehua Zhang, Amir Saeidi, and Chitta Baral. When
"Competency" in Reasoning Opens the Door to Vulnerability:
Jailbreaking LLMs via Novel Complex Ciphers, October 2024.
arXiv:2402.10601 [cs].

[13] Adib Hasan, Ileana Rugina, and Alex Wang. Pruning for Protec-
tion: Increasing Jailbreak Resistance in Aligned LLMs Without Fine-
Tuning, April 2024. arXiv:2401.10862 [cs].

[14] Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-Peng Lim, Lidong
Bing, Xing Xu, Soujanya Poria, and Roy Ka-Wei Lee. LLM-Adapters:
An Adapter Family for Parameter-Efficient Fine-Tuning of Large Lan-
guage Models, October 2023. arXiv:2304.01933.

[15] Yangsibo Huang, Samyak Gupta, Mengzhou Xia, Kai Li, and Danqi
Chen. Catastrophic Jailbreak of Open-source LLMs via Exploiting
Generation, October 2023. arXiv:2310.06987 [cs].

[16] Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika
Iyer, Yuning Mao, Michael Tontchev, Qing Hu, Brian Fuller, Davide
Testuggine, and Madian Khabsa. Llama Guard: LLM-based Input-
Output Safeguard for Human-AI Conversations, December 2023.
arXiv:2312.06674 [cs].

50

[17] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand,
Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard
Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mis-
tral 7B, October 2023. arXiv:2310.06825 [cs].

[18] Fengqing Jiang, Zhangchen Xu, Luyao Niu, Zhen Xiang, Bhaskar
Ramasubramanian, Bo Li, and Radha Poovendran. ArtPrompt:
ASCII Art-based Jailbreak Attacks against Aligned LLMs, June 2024.
arXiv:2402.11753 [cs].

[19] Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel
Berrios, Alice Gatti, Justin D. Li, Ann-Kathrin Dombrowski, Shash-
wat Goel, Long Phan, Gabriel Mukobi, Nathan Helm-Burger, Rassin
Lababidi, Lennart Justen, Andrew B. Liu, Michael Chen, Isabelle
Barrass, Oliver Zhang, Xiaoyuan Zhu, Rishub Tamirisa, Bhrugu
Bharathi, Adam Khoja, Zhenqi Zhao, Ariel Herbert-Voss, Cort B.
Breuer, Samuel Marks, Oam Patel, Andy Zou, Mantas Mazeika,
Zifan Wang, Palash Oswal, Weiran Lin, Adam A. Hunt, Justin
Tienken-Harder, Kevin Y. Shih, Kemper Talley, John Guan, Russell Ka-
plan, Ian Steneker, David Campbell, Brad Jokubaitis, Alex Levinson,
Jean Wang, William Qian, Kallol Krishna Karmakar, Steven Basart,
Stephen Fitz, Mindy Levine, Ponnurangam Kumaraguru, Uday Tu-
pakula, Vijay Varadharajan, Ruoyu Wang, Yan Shoshitaishvili, Jimmy
Ba, Kevin M. Esvelt, Alexandr Wang, and Dan Hendrycks. The
WMDP Benchmark: Measuring and Reducing Malicious Use With
Unlearning, May 2024. arXiv:2403.03218 [cs].

[20] Shen Li, Liuyi Yao, Lan Zhang, and Yaliang Li. Safety Layers of
Aligned Large Language Models: The Key to LLM Security, August
2024. arXiv:2408.17003 [cs].

[21] Yuxi Li, Yi Liu, Yuekang Li, Ling Shi, Gelei Deng, Shengquan Chen,
and Kailong Wang. Lockpicking LLMs: A Logit-Based Jailbreak
Using Token-level Manipulation, June 2024. arXiv:2405.13068 [cs].

[22] Zeyi Liao and Huan Sun. AmpleGCG: Learning a Universal and
Transferable Generative Model of Adversarial Suffixes for Jailbreak-
ing Both Open and Closed LLMs, May 2024. arXiv:2404.07921 [cs].

51

[23] Yuping Lin, Pengfei He, Han Xu, Yue Xing, Makoto Yamada, Hui Liu,
and Jiliang Tang. Towards Understanding Jailbreak Attacks in LLMs:
A Representation Space Analysis, June 2024. arXiv:2406.10794 [cs].

[24] Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. AutoDAN:
Generating Stealthy Jailbreak Prompts on Aligned Large Language
Models, October 2023. arXiv:2310.04451 [cs].

[25] Neal Mangaokar, Ashish Hooda, Jihye Choi, Shreyas Chan-
drashekaran, Kassem Fawaz, Somesh Jha, and Atul Prakash. PRP:
Propagating Universal Perturbations to Attack Large Language
Model Guard-Rails, February 2024. arXiv:2402.15911 [cs].

[26] Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang,
Norman Mu, Elham Sakhaee, Nathaniel Li, Steven Basart, Bo Li,
David Forsyth, and Dan Hendrycks. HarmBench: A Standardized
Evaluation Framework for Automated Red Teaming and Robust Re-
fusal, February 2024. arXiv:2402.04249 [cs].

[27] Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu
Lin, Yaojie Lu, Xianpei Han, and Weipeng Chen. ShortGPT: Layers
in Large Language Models are More Redundant Than You Expect,
March 2024. arXiv:2403.03853 [cs].

[28] Meta. Llama 2: Open Foundation and Fine-Tuned Chat Models, July
2023.

[29] Meta. The Llama 3 Herd of Models, August 2024.

[30] OpenAI. Introducing ChatGPT search.

[31] OpenAI. GPT-4 technical report, 2024. arXiv: 2303.08774 [cs.CL].

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
PyTorch: An Imperative Style, High-Performance Deep Learning
Library, December 2019. arXiv:1912.01703 [cs].

52

[33] Anselm Paulus, Arman Zharmagambetov, Chuan Guo, Brandon
Amos, and Yuandong Tian. AdvPrompter: Fast Adaptive Adversarial
Prompting for LLMs, April 2024. arXiv:2404.16873 [cs].

[34] ProtectAI.com. Fine-tuned DistilRoberta-base for rejection in the
output detection, 2024.

[35] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christo-
pher D. Manning, and Chelsea Finn. Direct Preference Optimization:
Your Language Model is Secretly a Reward Model, December 2023.
arXiv:2305.18290 [cs].

[36] Vyas Raina, Adian Liusie, and Mark Gales. Is LLM-as-a-Judge Ro-
bust? Investigating Universal Adversarial Attacks on Zero-shot LLM
Assessment, July 2024. arXiv:2402.14016 [cs].

[37] Gemini Team. Gemini: A Family of Highly Capable Multi-
modal Models, December 2023. arXiv: 2312.11805 [cs] Number:
arXiv:2312.11805.

[38] Gemma Team. Gemma 2: Improving Open Language Models at a
Practical Size, 2024. _eprint: 2408.00118.

[39] Gemma Team. Gemma: Open Models Based on Gemini Research
and Technology, 2024. _eprint: 2403.08295.

[40] Qwen Team. Qwen2.5: A Party of Foundation Models, September
2024.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Atten-
tion Is All You Need, August 2023. arXiv:1706.03762 [cs].

[42] Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao Xie, Xiangyu
Qi, Mengzhou Xia, Prateek Mittal, Mengdi Wang, and Peter Hender-
son. Assessing the Brittleness of Safety Alignment via Pruning and
Low-Rank Modifications, October 2024. arXiv:2402.05162 [cs].

53

[43] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi
Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von
Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexan-
der M. Rush. HuggingFace’s Transformers: State-of-the-art Natural
Language Processing, July 2020. arXiv:1910.03771.

[44] Tinghao Xie, Xiangyu Qi, Yi Zeng, Yangsibo Huang, Udari Mad-
hushani Sehwag, Kaixuan Huang, Luxi He, Boyi Wei, Dacheng
Li, Ying Sheng, Ruoxi Jia, Bo Li, Kai Li, Danqi Chen, Peter Hen-
derson, and Prateek Mittal. SORRY-Bench: Systematically Evalu-
ating Large Language Model Safety Refusal Behaviors, June 2024.
arXiv:2406.14598 [cs].

[45] Sibo Yi, Yule Liu, Zhen Sun, Tianshuo Cong, Xinlei He, Jiaxing Song,
Ke Xu, and Qi Li. Jailbreak Attacks and Defenses Against Large
Language Models: A Survey, August 2024. arXiv:2407.04295 [cs].

[46] Zheng-Xin Yong, Cristina Menghini, and Stephen H. Bach. Low-
Resource Languages Jailbreak GPT-4, January 2024. arXiv:2310.02446
[cs].

[47] Jiahao Yu, Xingwei Lin, Zheng Yu, and Xinyu Xing. GPTFUZZER:
Red Teaming Large Language Models with Auto-Generated Jailbreak
Prompts, June 2024. arXiv:2309.10253 [cs].

[48] Zhiyuan Yu, Xiaogeng Liu, Shunning Liang, Zach Cameron, Chaowei
Xiao, and Ning Zhang. Don’t Listen To Me: Understanding and
Exploring Jailbreak Prompts of Large Language Models.

[49] Yiran Zhao, Wenyue Zheng, Tianle Cai, Xuan Long Do, Kenji
Kawaguchi, Anirudh Goyal, and Michael Shieh. Accelerat-
ing Greedy Coordinate Gradient via Probe Sampling, May 2024.
arXiv:2403.01251 [cs].

[50] Yukai Zhou and Wenjie Wang. Don’t Say No: Jailbreaking LLM by
Suppressing Refusal, April 2024. arXiv:2404.16369 [cs].

54

[51] Yuqi Zhou, Lin Lu, Hanchi Sun, Pan Zhou, and Lichao Sun. Virtual
Context: Enhancing Jailbreak Attacks with Special Token Injection,
July 2024. arXiv:2406.19845 [cs].

[52] Zhenhong Zhou, Haiyang Yu, Xinghua Zhang, Rongwu Xu, Fei
Huang, and Yongbin Li. How Alignment and Jailbreak Work: Ex-
plain LLM Safety through Intermediate Hidden States, June 2024.
arXiv:2406.05644 [cs].

[53] Zhenhong Zhou, Haiyang Yu, Xinghua Zhang, Rongwu Xu, Fei
Huang, Kun Wang, Yang Liu, Junfeng Fang, and Yongbin Li. On the
Role of Attention Heads in Large Language Model Safety, October
2024. arXiv:2410.13708 [cs].

[54] Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen,
Yidong Wang, Linyi Yang, Wei Ye, Yue Zhang, Neil Zhenqiang
Gong, and Xing Xie. PromptRobust: Towards Evaluating the Robust-
ness of Large Language Models on Adversarial Prompts, July 2024.
arXiv:2306.04528 [cs].

[55] Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo,
Richard Ren, Alexander Pan, Xuwang Yin, Mantas Mazeika, Ann-
Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J. Byun,
Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song,
Matt Fredrikson, J. Zico Kolter, and Dan Hendrycks. Representation
Engineering: A Top-Down Approach to AI Transparency, October
2023. arXiv:2310.01405 [cs].

[56] Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin,
Maksym Andriushchenko, Rowan Wang, Zico Kolter, Matt Fredrik-
son, and Dan Hendrycks. Improving Alignment and Robustness
with Circuit Breakers, July 2024. arXiv:2406.04313 [cs].

[57] Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter,
and Matt Fredrikson. Universal and Transferable Adversarial Attacks
on Aligned Language Models, December 2023. arXiv:2307.15043 [cs].

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Background
	Large Language Models (LLMs)
	Alignment and Harmfulness
	Attacks on LLMs

	Methodology
	Threat Model
	Problem Formulation
	Estimating the Classifier

	Evaluation
	Experimental Setup
	Benign Settings
	Adversarial Settings

	Discussion & Future Work
	Domains
	Implication for White-box Attacks
	Embedded Classifier

	Related Work
	Jailbreak and Representations
	Pruning

	Conclusion
	Appendix
	Subspace Analysis
	Datasets
	Dataset Augmentation
	Estimations
	Other Models

	Bibliography

