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METHODS INTUITION

— . Existence of a Safety Classifier
Step 1: Classifier Extraction
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* We first study which candidate
classifiers are more suitable.
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We measure how well certain
structures within the models
separate unsafe and safe inputs.
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We see a peak, thus there is an
optimal structure (and candidate).
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Step 2: Adversarial Settings * We first take a structure from the Granite
” Y model and train a classification Llama 2
head on the model’s predictions. Qwen 2.5

 The resulting candidate classifier AgvBench
is evaluated in benign and

Large language models are aligned to respect guidelines, ensuring
adversarial settings.

that they do not comply with unsafe inputs.
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In adversarial settings, we verify
whether adversarial inputs of the

We sh h he underlvi £ lassifier of candidate transfer to the LLM,
e show that we can extract the underlying safety classifier o A Vicoveren

LLMs, leading to more precise and systematic attack on alighnhment. : 0.4 0.6 0.8
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This alignment fails in adversarial settings. Current attacks rely on
heuristics, limiting their assessment of alignment robustness.

EVALUATION TAKEAWAYS

Performance of Candidate Classifiers Targeting Alignment by Attacking the Classifier Necessary Rigor for Datasets
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